Mining various semantic relationships from unstructured user-generated web data
نویسندگان
چکیده
With the emergence of Web 2.0, the amount of user-generated web data has sharply increased. Thus, many studies have proposed techniques to extract wisdom from these usergenerated datasets. Some of these works have focused on extracting semantic relationships through the use of search logs or social annotations, but only hierarchical relationships have been considered. The goal of this paper is to detect various semantic relationships (hierarchical and non-hierarchical) between concepts using search logs and social annotations. The experimental results demonstrate that our proposed approach constructs adequate relation-
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملSentiment Analysis Meets Semantic Analysis: Constructing Insight Knowledge Bases
Numerous Web 2.0 applications collect user opinions, and other user-generated content in the form of product reviews, discussion boards, and blogs, which are often captured as unstructured data. Text mining techniques are important for analyzing users’ opinions (sentiment analysis) and identifying topics of interest (semantic analysis). However, little work has been carried out that combines se...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملDeveloping Knowledge Models of Social Media: A Case Study on LinkedIn
User Generated Content (UGC) exchanged [1] via large Social Network is considered a very important knowledge source about all aspects of the social engagements (e.g. interests, events, personal information, personal preferences, social experience, skills etc.). However this data is inherently unstructured or semi-structured. In this paper, we describe the results of a case study on LinkedIn Ire...
متن کاملMining social media: methods and approaches for content analysis
Web 2.0 provides technologies for online collaboration of users as well as the creation, publication and sharing of user-generated contents in an interactive way. Twitter, CNET, CiteSeerX, etc. are examples of Web 2.0 platforms which facilitate users in these activities and are viewed as rich sources of information. In the platforms mentioned as examples, users can participate in discussions, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Web Sem.
دوره 31 شماره
صفحات -
تاریخ انتشار 2015